Radiation exposure prior to traumatic brain injury induces responses that differ as a function of animal age
نویسندگان
چکیده
PURPOSE Uncontrolled radiation exposure due to radiological terrorism, industrial accidents or military circumstances is a continuing threat for the civilian population. Age plays a major role in the susceptibility to radiation; younger children are at higher risk of developing cognitive deterioration when compared to adults. Our objective was to determine if an exposure to radiation affected the vulnerability of the juvenile hippocampus to a subsequent moderate traumatic injury. MATERIALS AND METHODS Three-week-old (juvenile) and eight-week-old young adult C57BL/J6 male mice received whole body cesium-137 ((137)Cs) irradiation with 4 gray (Gy). One month later, unilateral traumatic brain injury was induced using a controlled cortical impact system. Two months post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Morris water-maze. After cognitive testing, animals were euthanized and their brains frozen for immunohistochemical assessment of activated microglia and neurogenesis in the hippocampal dentate gyrus. RESULTS All animals were able to learn the water maze task; however, treatment effects were seen when spatial memory retention was assessed. Animals that received irradiation as juveniles followed by a moderate traumatic brain injury one month later did not show spatial memory retention, i.e., were cognitively impaired. In contrast, all groups of animals that were treated as adults showed spatial memory retention in the probe trials. CONCLUSION Although the mechanisms involved are not clear, our results suggest that irradiation enhanced a young animal's vulnerability to develop cognitive injury following a subsequent traumatic injury.
منابع مشابه
Evelotion The Cognitive and behavioral inhibition Of Patients With traumatic brain injury
Aim(s): Inhibition, which is defined as one's ability to monitor and control responses, is one of the most important executive actions that occur after a traumatic brain injury. The purpose of this study was to compare the cognitive and behavioral inhibition in MTBI patients one year after their injury with healthy individuals. Participants & Methods: In this causal-comparative study, which wa...
متن کاملNeuropsychological and Neuropsychiatric Deficits Following Traumatic Brain Injury: Common Patterns and Neuropathological Mechanisms
Traumatic Brain Injury (TBI) in all degrees of injury severity mainly induces deviant cognitive, emotional and behavioral alterations that lead to their respective disorders. This brief overview strives to define the variables that determine the risk of occurrence of these disorders and to describe the common patterns of these disorders and their relevant neuropathogenetic mechanism(s). In addi...
متن کاملP143: The Neuroprotective Effect of Chloroquine in Animal Model of Traumatic Brain Injury
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality in young adults and children, and is a leading public health problem worldwide. In TBI, neurological impairment is caused by immediate brain tissue disruption (primary injury) and post‑injury cellular and molecular events (secondary injury) that exacerbate the primary neurological insult. However, the destructi...
متن کاملP108: Microglia in Traumatic Brain Injury
Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...
متن کاملP158: Targeting of Microglial M1/M2 Polarization Through Stem Cells Therapy as A Promising Candidate in Traumatic Brain Injury (TBI)
Traumatic brain injury is a serious global health problem with irreversible high morbidity and disability and Because of its unknown pathophysiological mechanisms, efficient therapeutic approaches to improve the poor outcome and long-term impairment of behavioral function are still remains lacking. The microglial cells are the resident macrophage cells of the brain and have M1/M2 phenotype, for...
متن کامل